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An analytical method is presented for analyzing elastodynamic responses of an immersed
composite laminate subjected to a Gaussian beam pressure. Firstly, the Fourier transform
technique and a modal analysis method are combined to obtain the surface displacements in
the frequency domain. Complex path techniques are proposed for dealing with singularities
of the responses associated with the inverse Fourier transformation. A quadrature scheme is
adopted to reduce the sampling points in the inverse Fourier transformation. Then
elastodynamic responses of the laminate in the time domain can be found by application of
Fourier superposition. An exponential window method is employed to overcome
singularities of integrands at u"0 and cut-o! frequencies. The e!ects of the #uid on
displacements in wave number, frequency and time domains are discussed. The presence of
the #uid is found to have considerable impact on the responses of the composite laminate.

( 2000 Academic Press
1. INTRODUCTION

The interaction of elastic waves with a #uid-loaded anisotropic laminate is frequently
encountered in non-destructive evaluation of materials and underwater explosions. In these
practical applications, the acoustic wave generated by a transducer or source of excitation
propagates through the upper coupling #uid "rst and then onto the surface of the layered
plate. This problem has received a large amount of attention in dynamics of advanced
composite materials. Characterizing the wave propagation in a #uid}solid system, Mott [1]
as well as Henneke and Jones [2] demonstrated theoretically and experimentally a lateral
shift phenomenon of a re#ected beam. Atalar [3] calculated re#ection coe$cients of sound
waves incident on a liquid-cubic-crystal half-space. Arikan et al. [4] extended this
investigation to a general anisotroic solid. Chimenti and Nayfeh [5] discussed the e!ect of
solid material viscosity on re#ection "elds. Liu et al. [6] proposed a hybrid numerical
method for studying elastic stress waves in a composite laminate subjected to a plane shock
wave. Liu et al. [7] proposed an exact method and applied it to wave propagation in
a composite laminate in contact with water on one side. Nayfeh [8] analyzed re#ection
coe$cients from a #uid-monoclinic half-space. Nayfeh and Taylor [9] used a matrix
transfer technique to obtain re#ection and transmission coe$cients for a #uid-loaded
media. Qu et al. [10] studied reciprocity relations for waves propagating in
a #uid-anisotropic half-space. Ann and Achenbach [11] calculated V(z) and V(x, z) curves
for a line focus acoustic microscope and a specimen with a crack using the boundary
element method. Liu et al. [12] combined the "nite element method and the boundary
element method to calculate <(z) curves as well. They found that the attenuation of water
22-460X/00/250813#21 $35.00/0 ( 2000 Academic Press



814 G. R. LIU E¹ A¸.
must be taken into account to get more accurate <(z) curves. Mampaert et al. [13] used an
analytical approach to study re#ection and transmission of normally incident ultrasonic
waves on periodic solid}liquid interfaces. Plona et al. [14] used experimental technique to
examine the characteristics of wave propagation in an alternating #uid-plate layer system.
Fay and Fortier [15] investigated wave transmission in immersed isotropic media. Nayfeh
and Chimenti [16] studied experimentally wave re#ection from an orthotropic plate
immersed in a #uid. Based on an e!ective modulus theory, Dayal and Kinra [17]
considered the propagation of leaky Lamb waves in an anisotroic plate. An exact solution
for the dispersion equation was found. Furthermore, Dayal and Kinra [18] used
non-destructive testing to investigate the matrix cracks in "ber-reinforced composites.
Nayfeh and Chimenti [19] investigated elastic waves propagating in a #uid-loaded
multiaxial anisotropic media via a transfer matrix method. Chimenti and Nayfeh [20]
studied guided wave propagation in biaxially laminated composite plates. Nayfeh and
Chimenti [21] conducted both theoretical and experimental investigations into re#ection
from a unidirectional "brous composite plate immersed in water. They found that the
Cremer correspondence principle was valid only when the ratio of #uid to solid density was
small.

In this paper, an analytical method proposed in reference [7] is extended to compute the
surface displacements of a composite laminate in contact with water on both sides,
subjected to a Gaussian beam pressure. The formulation is also extended to the time
domain. Detailed investigation is carried out into the e!ect of the #uid on the responses of
the laminate in wave number, frequency and time domains. Firstly, the Fourier transform
technique and a modal analysis method are combined to obtain the surface displacements
in the frequency domain. Complex path techniques are proposed for dealing with
singularities of the responses associated with the inverse Fourier transformation.
A quadrature scheme is adopted to reduce the sampling point in the inverse Fourier
transformation. Then the elastodynamic responses of the laminate in the time domain can
be found by application of the Fourier superposition. An exponential window method is
employed to overcome singularities of integrands at u"0 and cut-o! frequencies. In
computations, the interaction between the laminate and water is taken into account.
Numerical example are presented for a steel plate and a [C90/G#45/G!45]

s
composite

laminated plate

2. PROBLEM STATEMENT

A composite laminated plate of thickness H and in"nite length immersed completely in
a #uid is shown in Figure 1. The plate is made of an arbitrary number of linearly
elastic laminate. The bonding between plies is assumed to be perfect. Deformations of the
plate are assumed to be small under the source of excitation. The Cartesian co-ordinate
system is used. A transverse Gaussian beam applied at the upper water}plate interface is
given as

F (x)"A exp(!x2/b2)exp(!iut), (1)

where A is the amplitude of the Gaussian beam and b is the shape parameter, i"J!1 and
u is the frequency. The Gaussian beam is a distributed load which approaches zero as
xP#R or xP!R; its amplitude coincides with the z-axis. Notice that for small b, the



Figure 1. Geometry of an immersed composite laminated plate.
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Gaussian beam is a concentrated load. In time domain, the wavelet is given as

F(t)"G
sin(2nt/t

d
) 0(t(t

d
,

0, t)0, t*t
d

(2)

where t
d
is the time duration of the incident wavelet. In this paper, t

d
"2)0 is used. The #uid

is assumed to be irrotational, inviscid and acoustic. It is of interest to "nd the wave "eld in
the composite laminate.

3. FORMULATION

3.1. WAVE FIELD IN LAMINATE

The di!erential equation governing the elastodynamic behavior of an anisotropic
medium in the absence of body force can be written as [22]

oUG !LTcLU"0, (3)

where o is the mass density of the material, U"[u v w]T are the displacement components
in the x, y and z directions, respectively, c is the matrix of elastic constants for the
anisotropic material, the dot denotes di!erentiation with respect to time, L is the operator
matrix given in reference [22] and the superscript T indicates the transposed matrix.

The stresses on a plane z"constant can be expressed in terms of U as

p"LT
z
cLU, (4)
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where p"[p
xz

p
yz

p
zz

]T is the vector of stresses and the operator matrix L
z

is given in
reference [22].

Equation (3) can be solved by a Fourier transform technique. To this end, the following
Fourier transform of the displacement with respect to the horizontal co-ordinate x is
introduced:

U3 (z, k)"P
`=

~=

U (z, x)e*kx dx, (5)

where k is the wave number in the x direction. Application of the Fourier transform to
Equations (3) and (4) leads to the equation of motion and stresses in the wave number
domain:

oUG3 #k2DxxU3 #i2kDxz

LU3
Lz

!Dzz

L2U3
Lz2

"0, (6)

pJ "LT
z
cLU3 , (7)

where D
xx

, D
xz

and D
zz

can be found in reference [23].
The solution of equation (6) follows from Liu et al. [23] as

U3 "
3
+
j/1

C`
j
d`
j

exp(i1`
j
z)#

3
+
j/1

C~
j
d~
j

exp[i1~
j
(z!h)], (8)

where C
j
are constants to be determined using the boundary conditions, d

j
is the amplitude,

1
j
is the wave number in the z direction, h is the thickness of the layer, the superscripts

# and !, respectively, denote the variables corresponding to three eigenvalues which are
related to wave modes propagating in positive and negative z directions. Note that the term
e~*ut is omitted.

Equation (8) can be rewritten in the matrix form as

U3 "[V`E` V~E~] G
C`

C~H , (9)

where V`, V~, E`, E~, C` and C~ are given by Liu et al. [23].
In view of equation (8), the stresses can also be written in the matrix form as

pJ "[P`E` P~E~] G
C`

C~H , (10)

where P` and P~ are also given by Liu et al. [23].

3.2. WAVE FIELD IN WATER

The governing equation of the #uid can be expressed as

UG!c2
w A

L2U

Lx2
#

L2U

Lz2B"0, (11)
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where U is the velocity potential, c
w

is the sound velocity in water, and the subscript
w stands for water. The pressure p and velocity v

z
of water can be given by

p"o
w

LU

Lt
, v

z
"!

LU

Lz
, (12, 13)

where o
w

is the density of water. By the application of the inverse Fourier transform
technique, the velocity potential UI in the wave number domain can be obtained following
the procedure of Liu et al. [7] as

UI "W` exp(i1`
w

z)#W~ exp(i1~
w

z), (14)

where

1"G
1`
w
"G

Jk2
w
!k2,

iJk2!k2
w
,

Dk D)Dk
w
D ,

Dk D'Dk
w
D ,

1~
w
"G

!Jk2
w
!k2,

!iJk2!k2
w
,

Dk D)Dk
w
D ,

Dk D'Dk
w
D ,

(15)

where k
w
"u/c

w
, Dk D and Dk

w
D are the absolute values of k and k

w
, respectively, and the

constants W` and W~ can be determined by boundary conditions. The "rst term on the
right-hand side of equation (14) is related to the wave mode propagating in the positive z-
direction and the second term is related to the wave mode propagating in the negative
z direction.

The water depth is assumed to be much larger than the plate thickness so that the #uid
domains can be treated as in"nity and non-re#ection boundary conditions are applicable
on the top surface of the #uid above the plate and the bottom surface of the #uid below the
plate. For the top part of water, the second term in the expression of the velocity potential
has to be zero to satisfy the non-re#ection boundary conditions. Thus, we have

UI
Ta"W`

Ta exp(i1az) for Dk D)Dk
w
D , (16)

where 1a"Jk2
w
!k2, the subscript T stands for the top part of water and

UI
Tb"W`

Tb exp(!1bz) for Dk D'Dk
w
D , (17)

where 1b"Jk2!k2
w
. For the bottom part of water, the "rst term in the expression of the

velocity potential has to be zero; hence,

UI
Ba"W~

Ba exp(!i1az) for Dk D)Dk
w
D , (18)

UI
Bb"W~

Bb exp[1b (z!H
w
)] for Dk D'Dk

w
D , (19)

where the subscript B stands for the bottom part of water. Substituting equations (16)}(19)
into equations (12) and (13), we have

pJ
Ta"!iuo

w
W`

Ta exp(i1az), pJ
Tb"!iuo

w
W`

Tb exp(!1bz), (20, 21)

vJ
zTa"!i1aW`

Ta exp(i1az), vJ
zTb"1bW`

Tb exp(!1bz) (22, 23)
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for the top part of water and

pJ
Ba"!iuo

w
W~

Ta exp(!i1az), pJ
Bb"!iuo

w
W~

Bb exp(1b(z!H
w
)), (24, 25)

vJ
zBa"i1aW~

Ba exp(!i1az), vJ
zBb"!1bW~

Bb exp(1b(z!H
w
)) (26, 27)

for the bottom part of water.
The expressions for the pressure and velocity of the top and bottom parts of water are

obtained in terms of wave modes with unknown constants respectively. These constants will
be determined using boundary conditions in the next section.

3.3. BOUNDARY CONDITIONS

In a laminate code, a lamina numbering goes from the bottom to the top surface. The
boundary condition on the bottom water}plate interface is

!(pJ
zz

)L
1
"pJ

B
D
z/0

(28)

where the subscript 1 stands for the 1st layer, and the superscript ¸ denotes the lower
surface of the layer. The boundary conditions on the interfaces between plies are

pJ U
n
!pJ L

n`1
"0

U3 U
n
"U3 L

n`1

for 1(n(N!1, (29)

where the subscripts n and n#1 denote the layer numbers, and the superscript ; denotes
the upper surface of the layer. On the top water}plate interface, the boundary condition is
given by

(pJ
zz

)U
N
!pJ

T
D
z/0

"FI , (30)

where the subscript N stands for the Nth layer of the plate, and FI is the Fourier transform
of F.

It follows from equations (20), (21), (24) and (25) that the pressure of water at the top
water}plate interface and the bottom water}plate interface are, respectively,

pJ
Ta Dz/0

"!iuo
w
W`

Ta , pJ
Tb Dz/0

"!iuo
w
W`

Tb , (31, 32)

pJ
Ba Dz/0

"!iuo
w
W~

Ba , pJ
Bb Dz/0

"!iuo
w
W~

Bb , (33, 34)

The velocities of water at the top water}plate interface and the bottom water}plate interface
can be obtained from equations (22), (23), (26) and (27):

vJ
zTa Dz/0

"!i1aW`
Ta , vJ

zTb Dz/0
"1bW`

Tb , (35, 36)

vJ
zBa Dz/0

"i1aW~
Ba , vJ

zBb Dz/0
"!1bW~

Bb . (37, 38)



COMPOSITE LAMINATE 819
Using the displacement continuity condition of the plate and water at the two water}plate
interfaces, the velocities of water at the two surfaces of the plate can also be expressed in
terms of the plate displacement as

vJ
zT

D
z/0

"

LwJ
N

Lt
, vJ

zB
D
z/0

"

LwJ
1

Lt
. (39, 40)

In equations (39) and (40), wJ
N
"nU3

N
and wJ

1
"nU3

1
are the upper and lower surface

displacements in the z direction and n"[0 0 1]. Substituting equation (9) into equations
(39) and (40) results in

vJ
zT

D
z/0

"!iun[V`
N

E`
hN

V~
N

] G
C`

N
C~

N
H , (41)

vJ
zB

D
z/0

"!iun[!V`
1

!V~
1

E~
1

] G
C`

1
C~

1
H . (42)

For the top part of water, comparing equations (35) and (36) with equation (41) yields

W`
Ta"

u
1a

n[V`
N

E`
hN

V~
N

] G
C`

N
C~

N
H , (43)

W`
Tb"!

iu
1b

n[V`
N

E`
hN

V~
N

]G
C`

N
C~

N
H . (44)

For the bottom part of water, comparing equations (37) and (38) with equation (42) leads to

W~
Ba"!

u
1a

n[!V`
1

!V~
1

E~
h1

] G
C`

1
C~

1
H , (45)

W~
Bb"

iu
1b

n[!V`
1

!V~
1

E~
h1

] G
C`

1
C~

1
H . (46)

Substituting equations (43)}(46) into equations (31)} (34) yields

pJ
Ta Dz/0

"!

iu2o
w

1a
n[V`

N
E`
hN

V~
N

] G
C`

N
C~

N
H , (47)

pJ
Tb Dz/0

"!

u2o
w

1b
n[V`

N
E`
hN

V~
N

] G
C`

N
C~

N
H , (48)

pJ
Ba Dz/0

"

iu2o
w

1a
n[!V`

1
V~

1
E~
h1

] G
C`

1
C~

1
H , (49)
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pJ
Bb Dz/0

"

u2o
w

1b
n[!V`

1
V~

1
E~

h1
] G

C`
1

C~
1
H . (50)

Consider the boundary condition at the top surface of the plate. Substituting equations (47)
and (48) into equation (30) leads to

FI "nCP`
N
#

iu2o
w

1a
V`

N
E`
hN

P~
N
#

iu2o
w

1a
V~

N D G
C`

N
C~

N
H (51)

for Dk D)Dk
w
D and

FI "n CP`
N
#

u2o
w

1b
V`

N
E`
hN

P~
N
#

u2o
w

1b
V~

N D G
C`

N
C~

N
H (52)

for Dk D'Dk
w
D , where equation (10) has been used. Consider the boundary condition

at the bottom surface of the plate. Substituting equations (49) and (50) equation (28)
leads to

nC!P`
1
!

iu2o
w

1a
V`

1
!P~

1
!

iu2o
w

1a
V~

1
E~
h1D G

C`
1

C~
1
H"0 (53)

for Dk D)Dk
w
D and

nC!P`
1
!

u2o
w

1b
V`

1
!P~

1
!

u2o
w

1b
V~

1
E~
h1D G

C`
1

C~
1
H"0 (54)

for DkD'Dk
w
D , where equation (10) has been used. Combining equations (51)} (54) and (29)

gives

AC"T, (55)

where T is the vector of tractions acting on the two surfaces and (N!1) interfaces between
layers given by

T"[0 020 FI ]T. (56)

C is the constant vector given by

C"[C`
1

C~
1

C`
2

C~
2

2 2 C`
N

C~
N

]T (57)



COMPOSITE LAMINATE 821
and

A"

!P`
w1

!P~
w1

E~
h1

0 0 0 0 0 2 0

V`
1

E`
h1

V~
1

!V`
2

!V~
2

E~
h2

0 0 0 2 0

P`
1

E~
h1

P~
1

!P`
2

!P~
2

E~
h2

0 0 0 2 0

0 0 V`
2

E`
h2

V~
2

!V`
3

!V~
3

E~
h3

0 2 0

0 0 P`
2

E`
h2

P`
2

!P`
3

!P~
3

E~
h3

0 2 0

) ) 2 ) ) ) ) 2 )

) ) 2 ) ) ) ) 2 )

) ) 2 ) ) ) ) 2 )

0 0 2 0 0 0 0 P`
wN

E`
hN

P~
wN

.

(58)

In equation (58), P`
n

, P~
n

, E~
hn

and E~
hn

are given by Liu et al. [23] and the 3rd row of
matrices P`

w1
, P~

w1
and P`

wN
, P~

wN
are, respectively, given by

P`
w1

"nAP`
1
#

iu2o
w

1a
V`

1 B , P~
w1

"nAP~
1
#

iu2o
w

1a
V~

1 B , (59)

P`
wN

"nAP`
N
#

iu2o
w

1a
V`

NB , P~
wN

"nAP~
N
#

iu2o
w

1a
V~

NB , (60)

for Dk D)Dk
w
D and

P`
w1

"nAP`
1
#

u2o
w

1b
V`

1 B , P~
w1

"nAP~
1
#

u2o
w

1b
V~

1 B , (61)

P`
wN

"nAP`
N
#

u2o
w

1b
V`

NB , P~
wN

"nAP~
N
#

u2o
w

1b
V~

NB , (62)

for Dk D'Dk
w
D .

From equation (55), the constant vector C can be solved. Then the displacements and
stresses in the wave-number domain can be, respectively, calculated from equations (9) and
(10). Finally, applying the inverse Fourier transform, the displacement in the spatial domain
can be obtained as

U(z, x)"
1

2n P
=

~=

U3 (z, k)FI (k)exp(!ikx)dk. (63)

The integration in equation (63) can be carried out in (!R,!k
A
), (!k

A
, k

A
) and

(k
A
,#R), where k

A
is a positive value which is large enough so that all the real value poles

are located between !k
A

and k
A
. The "rst and last semi-in"nites can be evaluated by
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a scheme given by Xu and Mal [24]. The essential point is to evaluate the second "nite
integral. If the integrals are evaluated by ordinary routines using equally spaced sampling
points [25], the number of sampling points will be large. Especially for large frequency u,
the integrand in equation (63) varies quite rapidly near the pole. Moreover, it is not easy to
control the integral accuracy in using equally spaced routines. In view of the considerations,
a new quadrature scheme introduced by Liu et al. [23] is employed here.

The integrand in equation (63) has poles on the integration axis. This makes the
integration along the integration axis more di$cult. Complex paths methods for
overcoming the di$culties have been introduced by Liu et al. [7]. It should be noted that
when the #uid e!ect is considered, complex paths must be used even if the material of
a laminate is dissipative. Because the locations of the poles associated with the #uid are
independent of the material dissipation of the laminate, introducing material dissipation
cannot move the poles o! the integration axis. Besides, in the application of the complex
path techniques, it should "rstly be noticed that the triangular portion in the complex path
has to be long enough to get around all the poles associated with the laminate and water.
The complex paths should be very close to the real wave number axis to ensure that no
poles are included in the triangular loop enclosed by the complex path and real k-axis.
k
hw
"$0)2 are recommended here.

3.4. WAVE FIELD IN LAMINATES IN TIME DOMAIN

Once the displacement in the frequency domain is obtained, the displacement in the time
domain can be calculated by application of the Fourier superposition

u
t
(t)"

1

2n P
=

~=

;(u)FK (u)exp(iut) du, (64)

where the subscript t indicates the variable in the time domain, and ;(u) is the response in
the frequency domain which can be obtained from equation (63). FK (u) is the Fourier
transform of the time dependence of the external force given by

FK (u)"P
=

0

F (t)exp(!iut) dt. (65)

From equation (65), we have

FK (!u)"FK * (u), (66)

where the asterisk denotes the complex conjugate. The results in equation (65) are
demonstrated in Figure 2(a). Furthermore, from the spectrum of the incident wavelet, the
amplitudes become very small when the dimensionless frequencies uN '20)0. Hence, the
contribution from frequencies higher than 20)0 can be ignored. In the computation in this
paper, 0)uN )20 is used. In Figure 2(b), the distribution of ;(u) on the upper surface of
a [C90/G#45/G!45]

s
plate is depicted. Obviously, we have

; (!u)";*(u). (67)



Figure 2. (a) Frequency spectrum of external loading wavelet. (b) Dimensionless displacement in frequency
domain on the upper surface of a [C90/G#45/G!45]

s
plate subjected to a line load. ** Re[w(k)]; } } }

Im[w (k)].
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With the help of equations (66) and (67), equation (64) can be simpli"ed as

u
t
(t)"

1

n CP
=

0

(;
R
FK
R
!;

1
FK
1
)cos utdu!P

=

0

(;
R
FK
1
#;

1
FK
R
)sin utdu, (68)

where ;
R

and ;
I

are the real and imaginary parts of ; respectively; FK
R

and FK
I

are,
respectively the real and imaginary parts of FK .
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In equation (64), there are singularities of ;(u) at u"0 and cut-o! frequencies (k"0).
To overcome these di$culties an exponential window method [26, 27] is employed. Instead
of equation (64), the displacement in the time domain can be solved by

u
t
(t)"

egt
2n P

=

~=

;u (u!ig)FK u(u!ig)exp(!iut) du, (69)

where g is a small positive value and

FK u(u!ig)"P
td

0

e~gtF (t)exp(!iut) dt, (70)

Since ;
=

(u!ig) behaves well in !R(u(#R, the singularity of ;u at u"0 is
avoided.

4. NUMERICAL EXAMPLES

The analysis procedure given above has been incorporated into a FORTRAN code for
computing wave propagation in a #uid}plate}#uid system. In this section, numerical results
are presented in the form of normal displacements on the upper surface of the plate. Steel
and [C90/G#45/G!45]

s
composite laminated plates are studied. Here, the letters C and

G represent carbon/epoxy and glass/epoxy respectively. The numbers following the letters
indicate the angle of the "ber orientation with respect to the x-axis. The subscript s denotes
that the composite laminate is symmetrically stacked. The material properties of the plates,
the density of water and the acoustic wave velocity are given in reference [7]. In all
calculations, the following dimensionless parameters are used:

xN "x/H, uN "c (4, 4)u/q
0
, wN "c(4, 4)w/q

0
, uN "uH/c

s
,

tN"tc
s
/H, c

s
"Jc(4, 4)/o

w
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w
"c

w
/c

s
, oN

w
"o

w
/o

s
, (71)

where c (4,4) is the reference shear modulus. It is the shear modulus for a steel plate, while it
is the on-principal-axis shear modulus in tranversely isotropic plane of the carbon/epoxy
for a composite plate.

Two cases are used to verify the program. First of all, we let the density of the bottom part
of waer be zero and make a #uid}plate}#uid system become a #uid}plate}free system. In
Figure 3(a), responses on the upper surface of a #uid-loaded [C90/G#45/G!45]

s
plate to

a Gaussian beam with b"0)01 and uN "3)14 are depicted and compared with those from
reference [7]. Good agreement is observed. Secondly, we let the densities of the top and
bottom parts of waer be zero and make a #uid}plate}#uid system become a dry plate. In
Figure 3(b), responses of a [C90/G#45/G!45]

s
plate to a line load are illustrated and

compared with those from reference [23]. Very clearly, they agree very well.

4.1. RESPONSES IN WAVE NUMBER DOMAIN

In Figure 4, the upper surface responses of a completely immersed [C90/G#45/G!45]
s

composite laminated late to a Gaussian beam with shape factor b"0)01 and frequency
uN "3)14 are presented. The position of observation is at x/H"12)0. Figures 4(a) and 4(b)



Figure 3. Dimensionless displacement on the upper surface of a [C90/G#45/G!45]
s
plate. (a) Comparison in

frequency domain, ** Liu et al. [7]; n Present analysis. (b) Comparison in time domain, ** Liu et al. [7];
s Present analysis.
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are for the pure elastic laminate and dissipative plates respectively. A comparison of these
two "gures shows that the material dissipation reduces the magnitudes of the real and
imaginary parts of the displacements, but it has little e!ect on the variation patterns of the
real and imaginary parts. In addition, the material dissipation also reverses the peak
direction of the imaginary part. In order to discuss the e!ect of the bottom part of water, the
results from Liu et al. [7] for a #uid}plate}free system are depicted in these two "gures. It
can easily be found from these "gures that the presence of the bottom part of water reduces
the magnitudes of the real and imaginary parts of the surface displacements. The presence of



Figure 4. Dimensionless displacement in wave number domain on the upper surface of a [C90/G#45/G!45]
s

plate subjected to a sharp Gaussian beam pressure with b"0)01, uN "3)14. Bold lines represent the present
analysis, slim lines represent Liu et al. [7] (a) Responses of pure elastic plate. (b) Responses of dissipative plate.
== Re[w (k)]; } } } Im[w(k)]; ** Re[w (k)]; }} } Im[w(k)].
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the bottom part of water causes one more peak of the real and imaginary parts. This
indicates that the presence of the bottom part of water introduces new poles on the
integration axis and changes the variation patterns of the real and imaginary parts.

Next, the e!ect of frequency is examined. Figure 5 is the same as Figure 4 but uN "6)28.
The results of the pure elastic and dissipative plates are, respectively, presented in Figures
5(a) and 5(b). Firstly, the "ndings regarding the material dissipation e!ect are once again
con"rmed by comparing these two "gures. Secondly, curves in these two "gures indicate



Figure 5. Same as Figure 4, but uN "6)28.== Re[w(k)]; } } } Im[w (k)]; ** Re[w(k)]; } }} Im[w (k)].
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that the presence of the bottom part of water not only increases the magnitude of the
responses but also alters their distribution. This is contrary to previous "ndings. It can be
concluded that the e!ect of the bottom part of water is strongly dependent on the frequency
of excitation.

4.2. RESPONSES IN FREQUENCY DOMAIN

Figure 6 shows the distribution of the upper surface displacement of a completely
submerged steel plate subjected to a Gaussian beam with b"0)01. As b is very small, the



Figure 6. Dimensionless displacements on the upper surface of a steel plate subjected to a Gaussian beam with
shape factor b"0)01. (a) The Gaussian beam frequency is uN "3)14. (b) The Gaussian beam frequency is uN "6)28.
** Fluid}plate}free, p"0)0; } } } Fluid}plate}free, p"0)01; . . . . Fluid}plate}#uid, p"0)0; ) } ) } ) }
Fluid}plate}#uid, p"0)01.
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pressure is highly concentrated at the origin. For the sake of comparison, results from Liu
et al. [7] for the corresponding #uid}plate}free system are also plotted in the same "gure.
Figures 6(a) and 6(b) are for frequencies 3)14 and 6)28 respectively. Comparing the results of
the two systems, the presence of the bottom part of water reduces the amplitude of the
responses irrespective of whether the plate is pure elastic or dissipative. The #uid e!ect
becomes stronger as x/H increases. But it should be noted that the presence of water does
not alter the distribution pattern of the surface displacement of the steel plate. This is the



Figure 7. Dimensionless displacements on the upper surface of a [C90/G#45/G!45]
s

plate subjected to
a Gaussian beam with shape factor b"0)01. (a) The Gaussian beam frequency is uN "3)14. (b) The Gaussian beam
frequency is uN "6)28. ** Fluid}plate}free, p"0)0; } } } Fluid}plate}free, p"0)01; . . . . Fluid}plate}#uid,
p"0)0; ) } ) } ) } Fluid}plate}#uid, p"0)01.
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same as the e!ect of material dissipation on the surface displacement of the steel plate. That
is, the material dissipation does not change the distribution pattern of the surface
displacement, but it reduces the magnitude of the surface displacement and the reduction
becomes larger with an increase in x/H.

Figure 7 is the same as Figure 6 but for a [C90/G#45/G!45]
s
composite laminated

plate. In order to investigate the e!ect of the bottom part of water, the results of the
corresponding #uid}plate}free system from Liu et al. [7] are also plotted in the same plots.



Figure 8. Surface displacement in x direction of a steel plate subjected to a Gaussian beam with shape factor
b"0)01. (a) Fluid}plate}free system. ** Dry plate, p"0; } } } Dry plate, p"0)01; )} ) } ) } Fluid-plate-free,
p"0; ) ) ) ) Fluid-plate-free, p"0)01. (b) Fluid}plate}#uid system. ** Fluid}plate}free, p"0; } } }
Fluid}plate}free, p"0)01; ) } ) } ) } Fluid}plate}#uid, p"0; ) ) ) ) Fluid}plate}#uid, p"0)01.
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Once again, the material dissipation e!ect is con"rmed; namely, it can reduce the magnitude
of the surface displacement, but does not change the distribution pattern of the surface
displacement. When the loading frequency is 3)14, the magnitude of the surface
displacement of the #uid}plate}#uid system is smaller than that of the #uid}plate}free
system. Besides, the pronounced e!ect of the bottom part of water shifts the peaks and dips
of the surface responses. When the loading frequency changes to 6)28, the magnitude of the
surface displacement of the #uid}plate}#uid system is larger than that of the
#uid}plate}free system. This phenomenon is similar to the "nding for responses in the wave



Figure 9. Surface displacement in x direction of a [C90/G#45/G!45]
s
plate subjected to a Gaussian beam

with shape factor b"0)01. (a) Fluid}plate}free system. ** Dry plate, p"0; } } } Dry plate, p"0)01; ) } ) } ) }
Fluid-plate-free, p"0; ) ) ) ) Fluid-plate-free, p"0)01. (b) Fluid}plate}#uid system. ** Fluid}plate}free, p"0;
}} } Fluid}plate}free, p"0)01; ) ) ) ) Fluid}plate}#uid, p"0; ) } ) } ) } Fluid}plate}#uid, p"0)01.
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number domain. A comparison of Figure 7 and Figure 6 shows that water has a greater
impact on the composite laminate than on the steel plate. The reason is the lower ratio of
the composite to water density. Therefore, the e!ect of water must be taken into account in
the investigation of waves in a #uid-loaded composite laminate.

4.3. RESPONSES IN TIME DOMAIN

Figure 8 shows the surface displacements in the x-direction of a completely immersed
steel plate subjected to a Gaussian beam with shape factor b"0)01. The observing position
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is at x/H"12)0. Both the pure elastic and dissipative plates are considered. Figure 8(a)
illustrates the e!ect of the top part of water, while Figure 8(b) illustrates the e!ect of the
bottom part of water. It can be seen from these two "gures that the material dissipation and
the presence of water all cause a slight decrease in the peak and dip of the displacements, but
they seem to have little e!ect on the variation pattern of the responses.

Figure 9 is the same as Figure 8 but for a [C90/G#45/G!45]
s
composite laminate.

Clearly, the material dissipation a!ects the surface displacements of the laminate in
a similar way that it does the foregoing steel plate. But the e!ect of water on the surface
displacements of the composite laminate should specially be noticed. Firstly, the presence of
water not only alters the magnitude of the responses but also causes the displacements to
shift along the time t-axis. Also, it gives rise to one more dip and peak occurring just before
the maximum dip and peak.

5. CONCLUSIONS

An analytical method has been presented for analyzing the elastodynamic responses of
anisotropic laminated plate in contact with water on both sides. The responses of steel and
composite laminated plates to a Gaussian beam are investigated in the wave number,
frequency and time domains. Complex path techniques, the exponential window method
and the e!ective quadrature scheme are proposed to overcome the di$culties in integration.
Based on the numerical results presented in this paper, the following conclusions may be
drawn:

(1) The material dissipation reduces the magnitude of the responses and reverses the peak
direction of the imaginary part of responses in wave number domain, but has no e!ects
on the variation patterns of the responses.

(2) The presence of water reduces the magnitude of the responses of a steel plate, but it does
not alter the distribution of the responses of a steel plate.

(3) The e!ect of water on the responses of a composite laminated plate is considerable. It
not only a!ects signi"cantly the magnitude of the responses and shifts the peak and dips
of the responses, but also changes the distribution of the responses. Also, the e!ect of
water is strongly dependent on the frequency of an incident wave.

(4) Owing to the lower ratio of composite to water density, the #uid e!ect on the responses
of a composite plate is more remarkable than on those of a steel plate. Therefore, the
#uid e!ect must be taken into account in the analyses of wave propagation in
a #uid-loaded composite laminate.
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